Health benefits of Maple Syrup and the role of rare sugars

Tauseef Ahmad Khan, MBBS, PhD

Senior Research Associate, Department of Nutritional Sciences, Faculty of Medicine,

University of Toronto

Toronto 3D Risk Factor Modification and Clinical Trials Unit, St Michael's Hospital, Toronto

Approximation Approximation Consider
 Approximation Consider
 Canada
 GUELPH RESEARCH AND DEVELOPMENT CENTRE
 GUELPH, ONTARIO

OMSPA Summer Tour & Conference North Bay, Canada July 17th, 2024 St. Michael's

Inspired Care. Inspiring Science.

Disclosures (36 months)

Research Support

- Canadian Institutes of Health Research (CIHR)
- National Honey Board USA
- Institute for the Advancement of Food and Nutrition Sciences (IAFNS) [Previously ILSI North America]

Honoraria or Speaker Fees

- IFIC (International Food Information Council)
- IAFNS
- Arab Beverages Association

Advisory Board

- Nuradec

Sugar as the new public health concern!

Dietary and Public Health Guidelines

Guidelines

Canada.ca/FoodGuide

Free sugars: Less than 10% of total energy intake

WHO recommends a maximum of 5 to 10 teaspoons of free sugars per day

WHO recommends reducing free sugar intake at all stages of life to under 10 percent of physical calories to reduce the risk of unhealthy weight gain and dental caries. This equals a maximum of 50 g of sugar per day (ca. 10 teaspoons) for the average adult (at a calorie intake of 2,000 kcal).

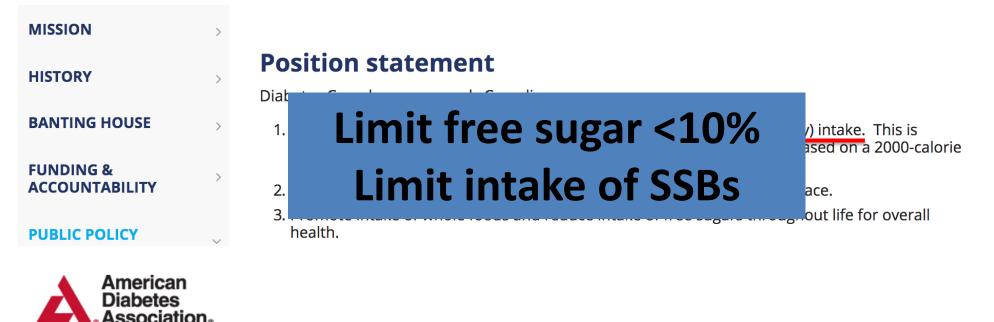
Keep intake of **added sugars** to less than **10%** of their total daily **calories**. [<6% recommended by the DGAC)

Canada's Dietary Guidelines

Free sugars are monosaccharides and disaccharides added to foods and beverages by the manufacturer, cook or consumer, and sugars naturally present in honey, syrups, fruit juices and fruit juice concentrates. *https://food-guide.canada.ca/en/guidelines/*

Canada.ca/FoodGuide

Free sugars include monosaccharides and disaccharides added to foods and beverages by the manufacturer, cook or consumer, and sugars naturally present in honey, **syrups**, fruit juices and fruit juice concentrates. *https://www.who.int/publications/i/item/9789241549028*



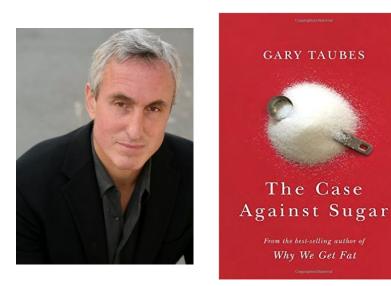
Added sugars include sucrose, dextrose, table sugar, **syrups**, honey, and sugars from concentrated fruit or vegetable juices.

https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf

DIABETES CANADA'S POSITION ON SUGARS

Myth: Eating too much sugar causes diabetes.

The American Diabetes Association recommends that people should avoid intake of sugar-sweetened beverages to help prevent diabetes. Sugar-sweetened beverages include beverages like:

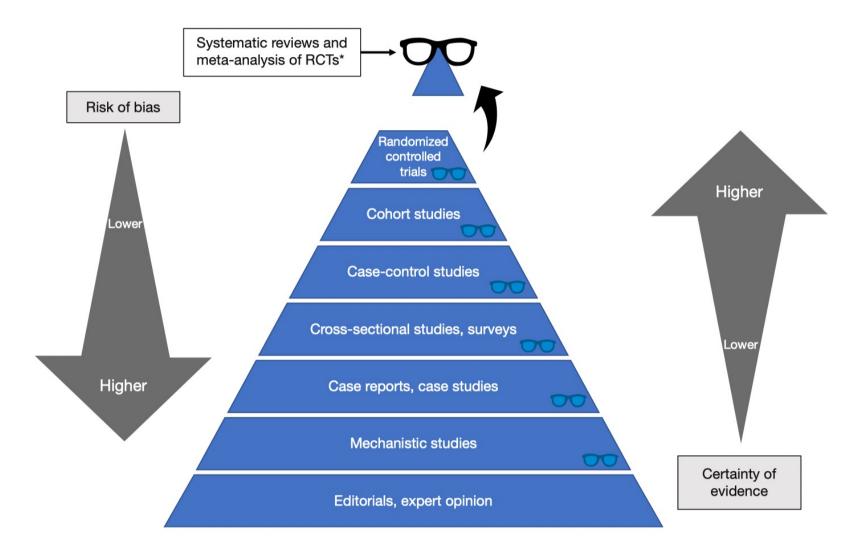

http://www.diabetes.ca/about-cda/public-policy-position-statements/sugars

"...revision of healthy eating guidelines to <u>reduce</u> <u>consumption of foods with naturally high sugar</u> <u>content (e.g. certain fruits and fruit juices)."</u>

http://www.idf.org/sugar

"...even an apple may not be a good thing... it may very well not be for people predisposed to gain weight easily or who are already obese and/or diabetic"

Food sources of sugars



Can natural sources of sugars be an alternative to refined sugars!

Does source of of sugars matter?

Hierarchy of Evidence using GRADE Approach

Search Strategy

Exposures: Design: 100% Sugar Sweetened Fruit Drink **Fruit Juice Beverages** Studies Fruits Yogurt Ice Cream

Cookies and Cakes, Chocolate Breakfast Cereals Jams, Jelly, Honey

Based on NHANES list of food sources of sugars [Welsh et al. 2011]

Outcomes:

Incident Type 2 Diabetes

Prospective Observational

Follow-Up > 1 year Free of diabetes at baseline

Does source of sugars matter?

Systematic review and meta-analysis of 85 studies 4 million participants (Khan 2024 submitted)

	Cohort			Risk ratio			Heterog	geneity
Food source	comparisons	Cases	Subjects	[95% Cls]		Р	l ²	Ρ
					I			
Sugar-sweetened beverages	16	26,884	411,739	1.25 [1.16, 1.35]		<0.0001	55%	0.005
Fruit drink	3	2,898	67,906	1.51 [1.18, 1.92]		0.001	50%	0.14
Mixed fruit juice	7	18,959	364,321	1.11 [1.01, 1.23]	-	0.033	75%	0.001
100% fruit juice	5	13,739	206,899	0.97 [0.86, 1.09]	-	0.62	0%	0.59
Fruit	21	65,989	1,847,583	0.94 [0.89, 0.99]	*	0.04	41%	0.038
Wholegrain breakfast cereals	3	3,491	216, 542	0.68 [0.60, 0.76]	→	0.013	78%	<0.001
Yoghurt	10	6,152	366,208	0.83 [0.73, 0.94]	- - -	0.008	58%	0.008
Jams, syrups, honey	4	993	27,847	0.93 [0.87, 1.0]	→	0.39	0%	0.39
Ice cream	2	1,499	150,477	0.83 [0.73, 0.95]	- - -	0.007	0%	0.37
Sherbet	2	1,548	172,015	0.90 [0.79, 1.03]		0.12	0%	0.6
Chocolate	5	1,630	26,737	0.79 [0.70, 0.89]	→	<0.0001	0%	0.83
Confectionary (biscuits, cakes, desserts)	3	837	23,531	0.95 [0.85, 1.05]		0.62	0%	0.95

0.40 0.70 1.00 1.30 1.60

Benefit Harm

Does source of sugars matter?

Systematic review and meta-analysis of 85 studies 4 million participants (Khan 2024 submitted)

	Cohort			Risk ratio			Hetero	geneity
Food source	comparisons	Cases	Subjects	[95% Cls]		Р	l ²	Ρ
					I			
Sugar-sweetened beverages	16	26,884	411,739	1.25 [1.16, 1.35]		<0.0001	55%	0.005
Fruit drink	3	2,898	67,906	1.51 [1.18, 1.92]		- 0.001	50%	0.14
Mixed fruit juice	7	18,959	364,321	1.11 [1.01, 1.23]	-•	0.033	75%	0.001
100% fruit juice	5	13,739	206,899	0.97 [0.86, 1.09]	-	0.62	0%	0.59
Fruit	21	65,989	1,847,583	0.94 [0.89, 0.99]	-	0.04	41%	0.038
Wholegrain breakfast cereals	3	3,491	216, 542	0.68 [0.60, 0.76]	~	0.013	78%	<0.001
Yoghurt	10	6,152	366,208	0.83 [0.73, 0.94]	~	0.008	58%	0.008
Jams, syrups, honey	4	993	27,847	0.93 [0.87, 1.0]	-	0.39	0%	0.39
Ice cream	2	1,499	150,477	0.83 [0.73, 0.95]	~	0.007	0%	0.37
Sherbet	2	1,548	172,015	0.90 [0.79, 1.03]		0.12	0%	0.6
Chocolate	5	1,630	26,737	0.79 [0.70, 0.89]	~	<0.0001	0%	0.83
Confectionary	3	837	23,531	0.95 [0.85, 1.05]	-	0.62	0%	0.95
(biscuits, cakes, desserts)						_		

0.40 0.70 1.00 1.30 1.60

Benefit Harm

Does source of sugars matter?

Systematic review and meta-analysis of 85 studies 4 million participants (Khan 2024 submitted)

Food sour	 There was an adverse association of 	ogeneity P
Sugar-swe	sugar-sweetened beverages, sweetened	0.005
Fruit drink	and mixed fruit juices with type 2	0.14
Mixed frui 100% fruit		0.001
Fruit		0.038
Wholegrai	 This did not extend to other important 	<0.001
Yoghurt Jams, syruj	food sources of sugars	0.008
Ice cream		0.37
Sherbet	 Other components in the food might 	0.6
Chocolate	overcome the 'possible' harms associated	0.83
Confectior (biscuits, c	-	0.95

Comparison of maple syrup to other natural sweeteners

U.S. Department of Agriculture (USDA). FoodData Central. Retrieved from <u>https://fdc.nal.usda.gov</u>

Component	Maple Syrup	Honey	Agave Syrup	Refined Sugar
Primary Sugar	Sucrose (60-66%)	Fructose (38%)	Fructose (56-60%)	Sucrose (99.9%)
Secondary Sugars	Glucose, Fructose	Glucose (31%)	Glucose (20-24%)	None
Oligosaccharides/Rare Sugars	Small amounts of oligosaccharides	Oligosaccharides, Maltose	Small amounts of inulin	None
Calories (per 100g)	260	304	310	387
Calories (per teaspoon)	13 (4.2 gm)	21 (7 gm)	20 (6.8 gm)	16 (4.2 gm)
Calories (per tablespoon)	52 (14.3 gm)	64 (21 gm)	60 (20.4 g)	49! (12.6 g)
Vitamins	Riboflavin, Thiamin	Vitamin C, B6	Vitamin C, B6	None
Minerals	Calcium, Potassium, Manganese, Zinc	Calcium, Potassium, Iron, Magnesium	Calcium, Potassium	None
Glycemic Index	54	58	19-30	65
Water Content	32%	17%	25%	0%
Other Components	Amino acids, Antioxidants	Amino acids, Antioxidants, Enzymes	Saponins, Inulin	None

Honey and Cardiometabolic Outcomes

33 TRIAL COMPARISONS | N=1105 | MIXED HEALTH | 8 WEEKS DOSE = 40 GRAM | COMPARATOR = OTHER CHO

			7 7	Sum	mary Effect Estimates		Heterog	eneity	Downgrade	G	RADE		•
Outcome	N trials	N	MD (mmol/L) [95%Cl]	SMD (%) [95% CI]		P _{MD}	l ²	Pa	Risk of Bias Inconsistency Indirectness ^a Imprecision Publication Bias	Dose-Response	Certainty	of Evidence	Interpretation of Magnitude of Effect
Adiposity Body weight (kg) BMI (kg/m^2) Waist circumference (cm)	14 10 1	374 457 46	-0.92 [-2.04, 0.19] 0.00 [-0.06, 0.05] -0.30 [-4.90, 4.30]	-0.43 [-0.96, 0.09] -0.04 [-0.66, 0.58] -0.13 [-2.09, 1.83]		0.105 0.905 0.898	0.0% 0.0% -	0.995 0.999 -			⊕⊕⊕0 ⊕⊕⊕⊕ ⊕000	MODERATE HIGH VERY LOW	No effect No effect No effect
Blood Pressure SBP (mmHg) DBP (mmHg)	11 11	278 278	1.00 [-0.50, 2.50] 1.25 [-0.13, 2.64]	0.39 [-0.20, 0.99] 0.53 [-0.06, 1.13]		0.190 0.076	6.6% 0.0%				⊕⊕⊕⊕ ⊕⊕⊕⊙	HIGH MODERATE	No effect No effect
Glycemic Outcomes Fasting Glucose (mmol/L) Fasting Insulin (uU/mL) HbA1c (%) HOMA-IR	20 8 10 7	655 127 162 101	-0.20 [-0.37, -0.04] 0.19 [-1.60, 1.99] -0.25 [-0.52, 0.04] 0.03 [-0.35, 0.41]	-0.54 [-0.97, -0.10] 0.07 [-0.62, 0.77] -0.54 [-1.16, 0.08] 0.06 [-0.68, 0.80]		0.017 0.832 0.086 0.872	76.8% 0.0% 63.0% 0.0%	0.972 0.004			$\begin{array}{c} \oplus \oplus \bigcirc \bigcirc \\ \oplus \oplus \oplus \oplus \bigcirc \\ \oplus \oplus \oplus \oplus \oplus \\ \oplus \oplus \oplus \oplus$	LOW MODERATE MODERATE HIGH	Small No effect No effect No effect
Cholesterol Outcomes Total Cholesterol (mmol/L) LDL (mmol/L) HDL (mmol/L)b Fasting Triglycerides (mmol/L) Apolipoprotein B (mg/dL)	29 29 29 29 1	992 992 992 992 30	-0.18 [-0.33, -0.04] -0.16 [-0.30, -0.02] 0.07 [0.04, 0.10] -0.13 [-0.20, -0.07] -2.07 [-14.64, 10.50]	-0.47 [-0.84, -0.11] -0.42 [-0.78, -0.06] 0.76 [0.40, 1.13] -0.73 [-1.09, -0.37] -0.32 [-2.28, 1.64]	<u></u> +	0.011 0.024 <0.001 <0.001 0.747	65.1% 73.8% 33.0% 63.4%	<0.001			$\begin{array}{c} \oplus \oplus \bigcirc \bigcirc \\ \oplus \oplus \oplus \bigcirc \bigcirc \\ \oplus \oplus \oplus \oplus \oplus \\ \oplus \oplus \oplus \bigcirc \bigcirc \\ \oplus \oplus \oplus \bigcirc \bigcirc \end{array}$	LOW LOW HIGH LOW LOW	Small important Small important Small important Small important No effect
Markers of Inflammation hsCRP (mg/L) IL-6 (pg/mL) TNFα (pg/mL)	8 5 2	247 119 94	-0.03 [-0.08, 0.02] 0.37 [0.01, 0.74] 1.44 [0.24, 2.64]	-0.42 [-1.11, 0.27] 0.88 [0.02, 1.77] 1.66 [0.28, 3.05]		0.236 0.046 0.019	0.0% 0.0% 22.9%	0.847			$\begin{array}{c} \oplus \oplus \oplus \oplus \oplus \\ \oplus \oplus \oplus \oplus \bigcirc \\ \oplus \oplus \oplus \bigcirc \bigcirc \end{array}$	HIGH MODERATE MODERATE	No effect Moderate Large
Uric Acid Uric acid (mg/dL)	5	103	-0.07 [-0.21, 0.07]	-0.42 [-1.31, 0.44]		0.340	0.0%	0.997			⊕⊕⊕⊙	MODERATE	No effect
Markers of NAFLD Alanine aminotransferase (U/L)	1	72	-9.75 [-18.29, -1.21]	-2.24 [-4.20, -0.28]	-2.50-2.00-1.50-1.00-0.50 0.00 0.50 1.00 1.50 2.00 2.50 Benefit Harm	0.025	-				⊕⊕⊙⊙	LOW	Moderate
					Denent Harm								

Ahmed, Amna, et al. "Effect of honey on cardiometabolic risk factors: a systematic review and meta-analysis." Nutrition Reviews (2022).

Honey and Cardiometabolic Outcomes

33 TRIAL COMPARISONS | N=1105 | MIXED HEALTH | 8 WEEKS DOSE = 40 GRAM | COMPARATOR = OTHER CHO

				Sum	mary Effect Estimates		Heterog	eneity		G	RADE		
Outcome	N trials	N	MD (mmol/L) [95%CI]	SMD (%) [95% CI]		P _{MD}	l ²	Pa	Risk of Bias Inconsistency Indirectness ^a Publication Bias	Dose-Response	Certainty	of Evidence	Interpretation of Magnitude of Effect
Adiposity Body weight (kg) BMI (kg/m^2) Waist circumference (cm)	14 10 1	374 457 46	-0.92 [-2.04, 0.19] 0.00 [-0.06, 0.05] -0.30 [-4.90, 4.30]	-0.43 [-0.96, 0.09] -0.04 [-0.66, 0.58] -0.13 [-2.09, 1.83]		0.105 0.905 0.898	0.0% 0.0%	0.995 0.999 -			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	MODERATE HIGH VERY LOW	No effect No effect No effect
Blood Pressure SBP (mmHg) DBP (mmHg)	11 11	278 278	1.00 [-0.50, 2.50] 1.25 [-0.13, 2.64]	0.39 [-0.20, 0.99] 0.53 [-0.06, 1.13]		0.190 0.076	6.6% 0.0%				$\begin{array}{c} \oplus \oplus \oplus \oplus \oplus \\ \oplus \oplus \oplus \odot \end{array} \end{array}$	HIGH MODERATE	No effect No effect
Glycemic Outcomes Fasting Glucose (mmol/L) Fasting Insulin (uU/mL) HbA1c (%) HOMA-IR	20 8 10 7	655 127 162 101	-0.20 [-0.37, -0.04] 0.19 [-1.60, 1.99] -0.25 [-0.52, 0.04] 0.03 [-0.35, 0.41]	-0.54 [-0.97, -0.10] 0.07 [-0.62, 0.77] -0.54 [-1.16, 0.08] 0.06 [-0.68, 0.80]		0.017 0.832 0.086 0.872	76.8% 0.0% 63.0% 0.0%	0.972 0.004			$\begin{array}{c} \oplus \oplus \bigcirc \bigcirc \\ \oplus \oplus \oplus \oplus \bigcirc \\ \oplus \oplus \oplus \oplus \oplus \end{array} \end{array}$	LOW MODERATE MODERATE HIGH	Small No effect No effect No effect
Cholesterol Outcomes Total Cholesterol (mmol/L) LDL (mmol/L) HDL (mmol/L)b Fasting Triglycerides (mmol/L) Apolipoprotein B (mg/dL)	29 29 29 29	992 992 992 992 30	-0.18 [-0.33, -0.04] -0.16 [-0.30, -0.02] 0.07 [0.04, 0.10] -0.13 [-0.20, -0.07] 2.97 [14.64, 10.50]	-0.47 [-0.84, -0.11] -0.42 [-0.78, -0.06] 0.76 [0.40, 1.13] -0.73 [-1.09, -0.37] 0.32 [2.20, 1.64]	* *	0.011 0.024 <0.001 <0.001 0.747	65.1% 73.8% 33.0% 63.4%	0.046			$\begin{array}{c} \oplus \oplus \bigcirc \bigcirc \\ \oplus \oplus \oplus \bigcirc \bigcirc \\ \oplus \oplus \oplus \oplus \oplus \\ \oplus \oplus \oplus \bigcirc \bigcirc \\ \oplus \oplus \oplus \bigcirc \bigcirc \\ \oplus \oplus \bigcirc \bigcirc \end{array}$	LOW LOW HIGH LOW	Small important Small important Small important Small important
Markers of Inflammation hsCRP (mg/L) IL-6 (pg/mL) TNFα (pg/mL)	8 5 2	247 119 94	-0.03 [-0.08, 0.02] 0.37 [0.01, 0.74] 1.44 [0.24, 2.64]	-0.42 [-1.11, 0.27] 0.88 [0.02, 1.77] 1.66 [0.28, 3.05]		0.236 0.046 0.019	0.0% 0.0% 22.9%	0.847				HIGH MODERATE MODERATE	No effect Moderate Large
Uric Acid Uric acid (mg/dL)	5	103	-0.07 [-0.21, 0.07]	-0.42 [-1.31, 0.44]		0.340	0.0%	0.997			⊕⊕⊕⊙	MODERATE	No effect
Markers of NAFLD Alanine aminotransferase (U/L)	1	72	-9.75 [-18.29, -1.21]	-2.24 [-4.20, -0.28]	-2.50-2.00-1.50-1.00-0.50 0.00 0.50 1.00 1.50 2.00 2.50 Benefit Harm	0.025	-				⊕⊕⊙⊙	LOW	Moderate
					Benefit Harm								

Ahmed, Amna, et al. "Effect of honey on cardiometabolic risk factors: a systematic review and meta-analysis." Nutrition Reviews (2022).

33 TRIAL COMPARISONS | N=1105 | MIXED HEALTH | 8 WEEKS DOSE = 40 GRAM | COMPARATOR = OTHER CHO

FLORAL SOURCE OF HONEY

				Sum	nmary Effect Estimates		Heteroge	neity		GRA	DE		
Outcome	N trials	N	MD (mmol/L) [95%CI]	SMD (%) [95% CI]		P _{MD}	l ²	Pa	Risk of Bias Inconsistency Indirectness ^a Imprecision Publication Bias	Upgrade esupodse-Heso Dose-Heso	Certainty of	Evidence	Interpretation of Magnitude of Effect
Cholesterol Outcomes Total Cholesterol (mmol/L) Clover Honey Robinia Honey Milk vetch honey Polyfloral Honey	3 1 1 22	47 63 43 746	-0.52 [-0.78, -0.26] 0.10 [-0.21, 0.41]	-2.69 [-3.85, -1.59] -3.92 [-5.88, -1.96] 0.65 [-1.30, 2.62] -0.20 [-0.63, 0.20]		<0.001 <0.001 0.511 0.325	92.0% - - 37.0	-			000 000 000 000 000 000 000	LOW LOW MODERATE LOW	Moderate Large No effect
LDL Cholesterol Clover Honey Robinia Honey Milk vetch honey Polyfloral Honey	3 1 1 22	47 63 43 746	-0.69 [-1.04, -0.34] 0.38 [0.15, 0.60]	-2.39 [-3.52, -1.26] -3.86 [-5.82, -1.90] 3.33 [1.37, 5.29] -0.33 [-0.76, 0.07]		<0.001 <0.001 <0.001 0.117	93.3% - 41.9%	-			$\begin{array}{c} \oplus \oplus \bigcirc \bigcirc \bigcirc \\ \oplus \oplus \oplus \bigcirc \bigcirc \bigcirc \\ \oplus \oplus \oplus \bigcirc \bigcirc \bigcirc \end{array}$	LOW LOW LOW LOW	Moderate Large Moderate No effect
HDL Cholesterol Clover Honey Robinia Honey Milk vetch honey Polyfloral Honey	3 1 1 22	47 63 43 746	0.08 [0.02, 0.15] 0.06 [-0.01, 0.13] 0.00 [-0.10, 0.09] 0.09 [0.06 0 11]	1.39 [0.35, 2.61] 1.68 [-0.28, 3.64] -0.06 [-2.01, 1.91] 1.50 [1.00 1.84]		0.011 0.096 0.957 <0.001	86.5% - 0.00%	<0.001 - 0.580			$\begin{array}{c} \oplus \oplus \bigcirc \bigcirc \bigcirc \\ \oplus \oplus \bigcirc \bigcirc \bigcirc \\ \oplus \oplus \oplus \bigcirc \bigcirc \bigcirc \\ \oplus \oplus \oplus \oplus$	LOW LOW LOW	No effect No effect No effect
Fasting Triglycerides Clover Honey Robinia Honey Milk vetch honey Polyfloral Honey	3 1 1 22	47 63 43 746	-0.20 [-0.37, -0.03]	-4.68 [-5.88, -3.62] -2.31 [-4.27, -0.35] -0.98 [-2.94, 0.98] 1.50 [1.00, 1.84]		<0.001 0.023 0.328	88.36 - -	<0.00 - -			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	LOW LOW LOW MODERATE	Moderate Moderate No effect Small
Apolipoprotein B Polyfloral Honey	1	30	-2.07 [-14.64, 10.50]	-0.32 [-2.28, 1.64]		0.747	-	-			⊕⊕00	LOW	No effect
Markers of Inflammation hsCRP (mg/L) Polyfloral Honey IL-6 (pg/mL) Polyfloral Honey TNFalpha (pg/mL) Polyfloral Honey	6 5 2	149 119 94	0.43 [-0.35, 1.21] 0.37 [0.01, 0.74] 1.44 [0.24, 2.64]	0.44 [-0.36, 1.24] 0.89 [0.02, 1.78] 1.66 [0.28, 3.05]	- B - B	0.277 0.046 0.029	0.00% 0.00% 22.920	0.850			⊕⊕00	MODERATE MODERATE MODERATE	Moderate
Uric Acid (mg/dL) Robinia Honey Polyfloral Honey	2 3	8 95		-0.69 [-2.08, 0.69] -0.13 [-1.26, 1.00]	-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00 Benefit Harm	0.353 0.818	0.000 0.000	0.690 0.999				MODERATE MODERATE	

Ahmed, Amna, et al. "Effect of honey on cardiometabolic risk factors: a systematic review and meta-analysis." Nutrition Reviews (2022).

What about health benefits of maple syrup

Can maple syrup, a natural sweetener, be used as a healthy alternative to refined sugars similar to honey!

Maple syrup composition highlights

- Maple syrup is a naturally sweet product with a distinctive flavor and nutritional benefits.
- It is produced by boiling the sap of mature maple trees to evaporate water and concentrate the sugar content to 66–67 °Brix, resulting in a thick, sweet syrup.
- Canada produced 17.4 million gallons of maple syrup in 2022, with a value of ~\$650 million

Maple syrup composition highlights

- Maple syrup contains sugars, organic compounds, micronutrients, and phytochemicals — some of which are formed during the concentration process
- Sugars: sucrose, glucose, fructose, oligosaccharides (rare sugars), polysaccharides (inulin)
- Organic acids: Malic acid, fumaric acid, succinic acid (12 reported)
- Amino acids: alanine, valine, proline, serine, leucine (11 reported)
- Vitamins: Thiamine, niacin, riboflavin, folic acid, biotin, vit A, pyridoxine
- Phenolic compounds: Vanillin, galic acid, syringaldehyde ... (~100s reported)
- Minerals: K, Ca, Na, Mg, Fe, Mn, Zn, Al etc
- **Total reported**: Exceed 200 chemical compounds

Maple Syrup Composition

	Maple Syrup
Solids	66-67%
рН	6.4
Carbohydrates	
Sucrose	66%
Glucose	0.7%
Fructose	0.4%
Oligosaccharides (rare sugars)	0.2%
Minerals	
Nitrogen	0.03%
Potassium	2026 mg/L
Calcium	775 mg/L
Magnesium	167 mg/L
Manganese	39.8 ppm
Sodium	36 ppm
Phosphorus, Iron, Zinc, Aluminium, Iron, Chl	191.82 ppm
Organic Acids	
Malic acid	0.32%
Fumaric acid	0.13%
Succinic acid	0.26%

- 1. Ball DW. The chemical composition of maple syrup. Journal of Chemical Education. 2007 Oct;84(10):1647.
- Perkins TD, van den Berg AK. Maple syrup—Production, composition, chemistry, and sensory characteristics. Advances in food and nutrition research. 2009 Jan 1;56:101-43.
- 3. Mohammed F, Sibley P, Abdulwali N, Guillaume D. Nutritional, pharmacological, and sensory properties of maple syrup: A comprehensive review. Heliyon. 2023 Aug 21.

U.S. Department of Agriculture (USDA). FoodData Central. Retrieved from https://fdc.nal.usda.gov

Component	Maple Syrup	Honey	Agave Syrup	Refined Sugar
Primary Sugar	Sucrose (60-66%)	Fructose (38%)	Fructose (56-60%)	Sucrose (99.9%)
Secondary Sugars	Glucose, Fructose	Glucose (31%)	Glucose (20-24%)	None
Oligosaccharides/Rare Sugars	Small amounts of oligosaccharides	Oligosaccharides, Maltose	Small amounts of inulin	None
Calories (per 100g)	260	304	310	387
Calories (per teaspoon)	17 (6.6 gm)	21 (7 gm)	20 (6.8 gm)	16 (4.2 gm)
Calories (per tablespoon)	51 (19.8 gm)	64 (21 gm)	60 (20.4 g)	49! (12.6 g)
Vitamins	Riboflavin, Thiamin	Vitamin C, B6	Vitamin C, B6	None
Minerals	Calcium, Potassium, Manganese, Zinc	Calcium, Potassium, Iron, Magnesium	Calcium, Potassium	None
Glycemic Index	54	58	19-30	65
Water Content	32%	17%	25%	0%
Other Components	Amino acids, Antioxidants	Amino acids, Antioxidants, Enzymes	Saponins, Inulin	None

CON	ITAI	NS	NU	ME	ROL
ANT	IOXI	DA	NT	s	

efined sugar, corn syrup, and agave nectar contain minimal ntioxidant activity, but maple syrup, dark and blackstrap tolasses, brown sugar, and raw honey showed higher ntioxidant capacity. ure maple syrup contains up to 24 different antioxidants, whic

help reduce free radical damage that can cause inflammation and contribute to the formation of various chronic diseases.

Select darker, grade B maple syrups since these contain n beneficial antioxidants than the lighter syrups do.

9

har nesercher kählle Tufwild and her kann weiginate arstract from manje anyou in conjunction that antibiotics ciprofloxacin and cartenellillin, they served the same and minimicobal effective with upwards of percent less antibiotics. In other words, the maple rup extract halped that this extract increased the searchers found that the extract increased the instance of the antibiotics words better. How?

Perception

TORONTO STAR 🔇

Here's why maple syrup is very good for your health

Good news for sweet tooths everywhere: that sticky syrup you love to pour on pancakes and waffles is not only bad for you — it might be good for you, too.

March 22, 2010 | 🖱 2 min read 🔲 🖆 戻

HEALTH <

Dr. Axe > Nutrition > Articles

✓ Fact Checked

Maple Syrup: the Most Versatile, Best Natural Sweetener?

By Jillian Levy, CHHC December 11, 2023

Pour It On! Maple Syrup Is Good for

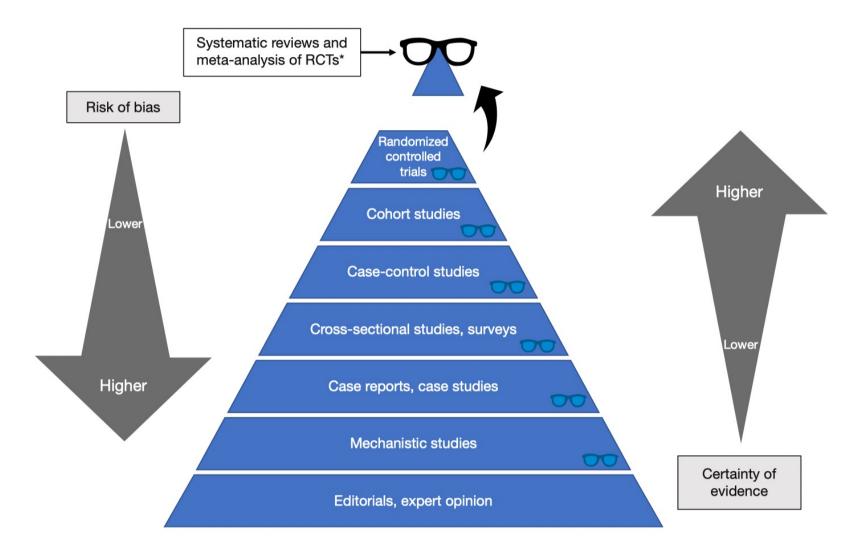
You

Home

NEWS

Postmedia - Scientist sour on reported benefits of maple syrup

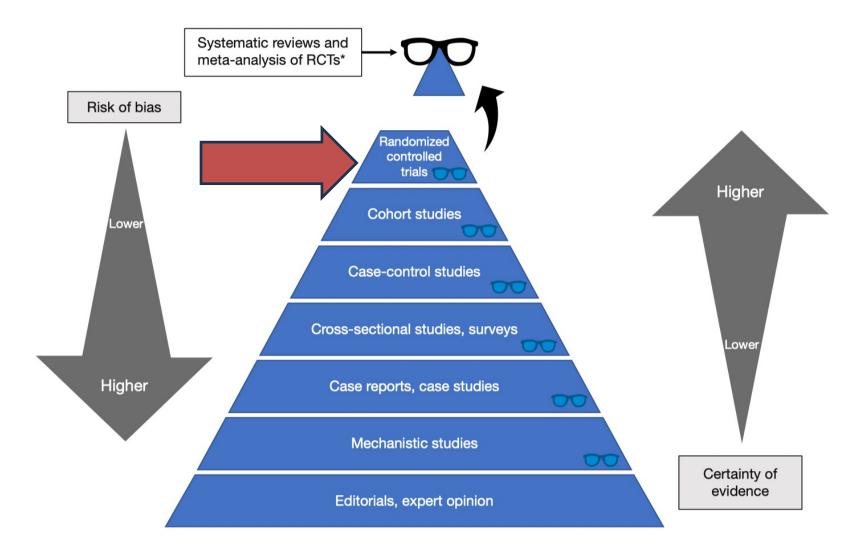
"This study is of academic interest, and that is all," Schwarcz told Postmedia News. "To suggest that maple syrup is healthy because it contains a number of phenolic compounds is rumpled thinking that needs to be straightened out. Phenolics are not rare -they are abundant in fruits and vegetables."


Maple syrup is a breakfast staple. Is it healthier for you than sugar?

Published 5:02 a.m. ET Dec. 7, 2023 Updated 2:59 p.m. ET March 19, 2024

Dr Axe

Hierarchy of Evidence using GRADE Approach



Current limitations of Maple Syrup research

Majority of studies have focused on cellular or animal models Individual compounds in maple syrup are investigated

Maple syrup extract is tested

Hierarchy of Evidence using GRADE Approach

WHAT IS THE EVIDENCE FROM RANDOMIZED CONTROLLED TRIALS (RCTS)?

Sports RCT

- Maple syrup sweetened carbohydrate (CHO) drink (6%) vs commercial sports drink, glucose, and control (water)
- 85 active healthy men
- Cognitive flexibility and cerebral oxygenation after HIIE

Article

Impact of Carbohydrate Ingestion on Cognitive Flexibility and Cerebral Oxygenation during High-Intensity Intermittent Exercise: A Comparison between Maple Products and Usual Carbohydrate Solutions

Olivier Dupuy ^{1,*} and Jonathan Tremblay ²

- ¹ Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Université de Poitiers, 86000 Poitiers, France
- ² École de kinésiologie et des sciences de l'activité physique, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- * Correspondence: olivier.dupuy@univ-poitiers.fr

Results

- CHO ingestion, regardless of its type, tends to improve cognitive performance throughout exercise
- The ingestion of maple products and the commercial sports drink led to a lesser increase in glycemia than glucose ingestion.

Lavoie and Tremblay Journal of the International Society of Sports Nutrition (2020) 17:63 https://doi.org/10.1186/s12970-020-00384-3

Journal of the International Society of Sports Nutrition

RESEARCH ARTICLE

Open Access

Ingestion of maple-based and other carbohydrate sports drinks: effect on sensory perceptions during prolonged exercise

Lorianne Lavoie and Jonathan Tremblay^{*}

Sports RCT

- Maple water drink, maple syrup drink, glucose and commercial sports drink,
- 76 active healthy
- Perceive exertion (RPE), and appreciation schore

Results

• A sports drink containing maple syrup is well appreciated during prolonged exercise and appears to be a viable alternatives to more common sources of carbohydrates.

OR14-05-23 Substituting Refined Sugars by Maple Syrup Decreases Key Cardiometabolic Risk Factors in Individuals With Mild Metabolic Alterations: A Double-Blind, Crossover RCT André Marette¹, Geneviève Pilon¹, Arianne Morissette¹, Anne-Laure Agrinier¹, Théo Gignac², Lamia Ramadan¹, Julie Marois³, Thibault Varin¹, Éric Larose¹, Claudia Gagnon², Benoit Arsenault¹, Jean-Pierre Després¹, Anne-Marie Carreau², Marie-Claude Vohl³

 ¹Québec Heart and Lung Institute Université Laval
 ²Research Center Of CHU Université Laval
 ³Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval

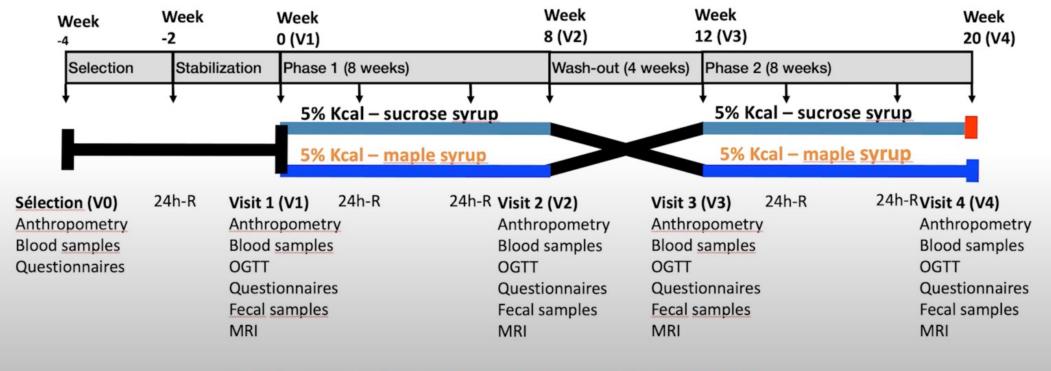
RCT in diseased individuals

USA (EN)

RESEARCH INGREDIENTS NETWORK ABOUT NEWS

Objective

- Test the impact of maple syrup consumption compared to an equivalent amount of refined sugar on cardiometabolic health.
- A double-blind cross-over trial


PICOT

- Population: 42 adults
 - With cardiometabolic alterations [at least one of the following criteria: fasting insulin > 42 pM/L, Fasting glucose: 5.6-6.9 mmol/L, HbA1c: 5.7-6.4%, or fasting triglycerides > 1.35 mmol/L]
- Intervention:
 - Substitute 5% of their total caloric intake provided by added sugars with a) maple syrup or b) artificially flavoured sucrose syrup
- Outcomes:
 - Cardiometabolic risk factors
 - Fecal microbiome
- Time: 8-week intervention [with 4 weeks washout period]

Objective

18-75 yrs-old, BMI 23-40kg/m² and at least one of the following criteria: FI > 42 pM, FG : 5.6-6.9 mM, HbA1c : 5.7-6.4%, or fasting TG > 1.35 mM

Randomized, double-blind, placebo-controlled crossover study

.

n=42, except for MRI analyses where N=27-28

Results

- Maple syrup decreased abundance of *Bacteroides Pectinophilus* and *Klebsiella* in the fecal microbiome of participants.
- Maple syrup improved:
 - Systolic blood pressure (p =0.03)
 - Abdominal fat mass (p=0.02)
 - Glucose iAUC (p=0.05)

Overall results

When comparing the impact of maple syrup vs an equivalent amount of calories from sucrose alone:

Maple syrup vs Sucrose	Implications
↓ AUC glucose (OGTT)	Less deleterious impact on glucose homeostasis
 ↓ systolic pressure ↓ diastolic pressure* 	Reduced impact on blood pressure
↓ android fat	Less abdominal fat accumulation

Conclusion

- In this clinical study, replacing refined sugars with the same quantity of maple syrup for 5% of daily energy intake [2 tablespoons] resulted in
 - Improved glucose control
 - Lower blood pressure
 - Reduced abdominal fat
- These results suggest that using maple syrup as a preferred source of added sugar *improves* [less deleterious] metabolic health compared to refined sugars, and was associated with changes in the gut microbiota composition

Glycemic Index (GI)

- Classify carbohydrate foods according to their effect on postprandial plasma glucose response — property of food
- Relative measure GI is iAUC response relative to equivalent glucose or white bread
- Low GI foods release their carbohydrate slowly and elicit a lower glycemic response [low GI ≤55; medium 56-69; high GI ≥ 70]
- Benefits: weight maintenance, weight loss, benefits for glucose control, diabetes, and heart disease.

GI News

Maple Syrup GI

Home / GI Search

GI Search

Home

GI Search

Food Name maple syrup	GI Search GI €	Serving Size (g) Search Serving Size (g)	Average carbohydrate portion (g) Search Average carbohydra	 GL (based on average carbohydrate potion) Search GL (based on avera
Maple flavored syrup	68		5	3
Maple syrup, pure Canadian	54		5	3

Showing 1 to 2 of 2 entries (filtered from 4,249 total entries)

Testing & Research

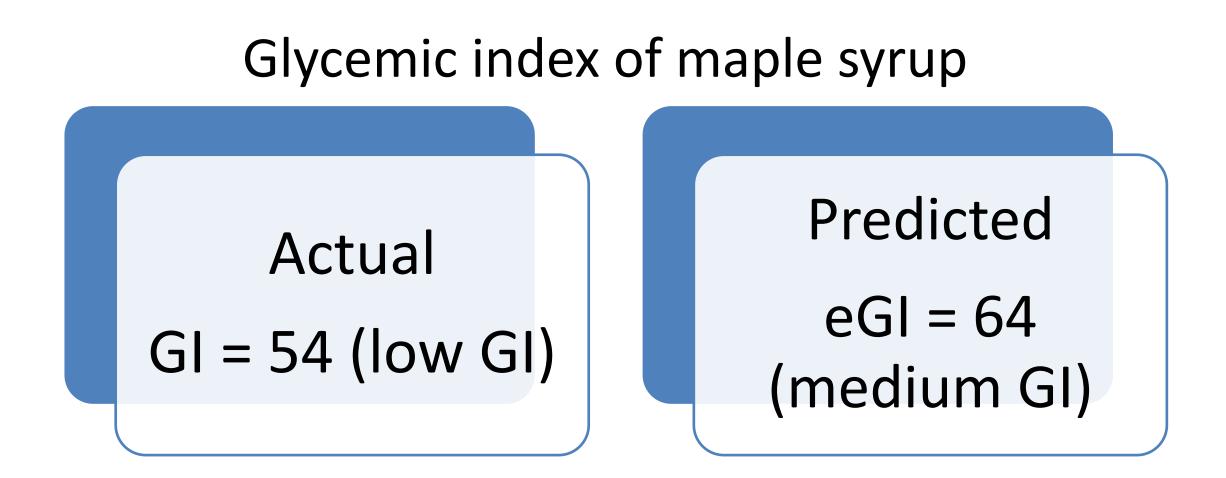
Previous

Next

= Glycemic index (GI) values and glycemic load (GL) values determined in studies with method deviations from ISO 26642:2010 or values showing wide variability.

Low GI foods and drinks have a GI value less than or equal to 55 and are characterised by a smaller rise and fall in blood glucose.

High GI foods and drinks have a GI value greater than or equal to 70 and are characterised by faster and higher peaks and troughs in blood glucose levels.


Medium GI foods and drinks have a GI value between 56 and 69.

https://glycemicindex.com/gi-search/?food_name=maple+syrup

Comparison of maple syrup to other natural sweeteners

U.S. Department of Agriculture (USDA). FoodData Central. Retrieved from https://fdc.nal.usda.gov

Component	Maple Syrup	Honey	Agave Syrup	Refined Sugar
Primary Sugar	Sucrose (60-66%)	Fructose (38%)	Fructose (56-60%)	Sucrose (99.9%)
Secondary Sugars	Glucose, Fructose	Glucose (31%)	Glucose (20-24%)	None
Oligosaccharides/Rare Sugars	Small amounts of oligosaccharides	Oligosaccharides, Maltose	Small amounts of inulin	None
Calories (per 100g)	260	304	310	387
Calories (per teaspoon)	17 (6.6 gm)	21 (7 gm)	20 (6.8 gm)	16 (4.2 gm)
Calories (per tablespoon)	51 (19.8 gm)	64 (21 gm)	60 (20.4 g)	49! (12.6 g)
Vitamins	Riboflavin, Thiamin	Vitamin C, B6	Vitamin C, B6	None
Minerals	Calcium, Potassium, Manganese, Zinc	Calcium, Potassium, Iron, Magnesium	Calcium, Potassium	None
Glycemic Index	54	58	19-30	65
Water Content	32%	17%	25%	0%
Other Components	Amino acids, Antioxidants	Amino acids, Antioxidants, Enzymes	Saponins, Inulin	None

Mechanism: Inhibition of glucosidase activity and/or glucose transporters!

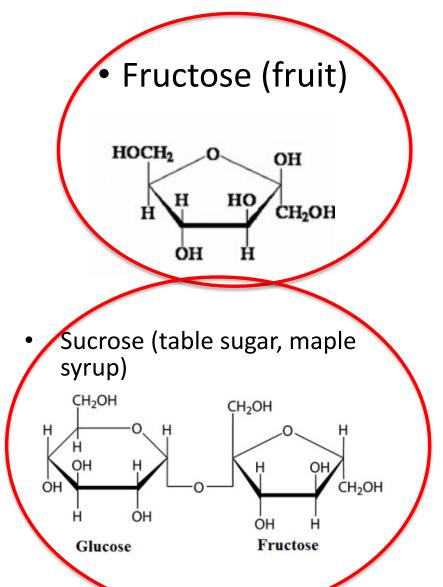
https://glycemicindex.com/ Sydney University's Glycemic Index Research Service (Sydney, Australi

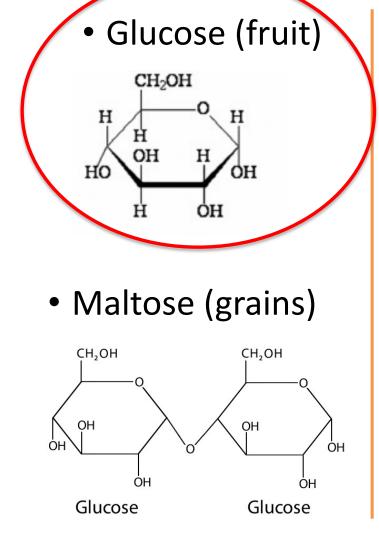
$$GI = \frac{\sum_{i=1}^{m} x_i a_i GI_i}{\sum_{i=1}^{m} x_i + \sum_{j=1}^{n} x_j b_j}$$
(Rytz 2019)

Other studies (animal or cellular)

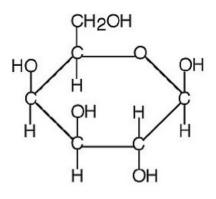
- Improved glucose metabolism though
 - Inhibition of alpha-glucosidase [limit glucose absorption]
 - Affects gastic inhibitory peptide (GIP) [affects glucose and lipid metabolism] and glucagon-like peptide (GLP-1) [improves satiety]
 - Possible inhibition of intestinal glucose transporters SGLT1 and GLUT2, this preventing glucose absorption

What is the mechanism?

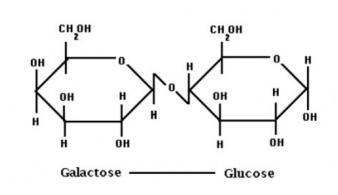

- Active functional molecules!
 - Polyphenols
 - Organic acids
 - Vitamins
 - Minerals
 - Phytohormones (e.g. abscisic acid (ABA))
 - Sugars

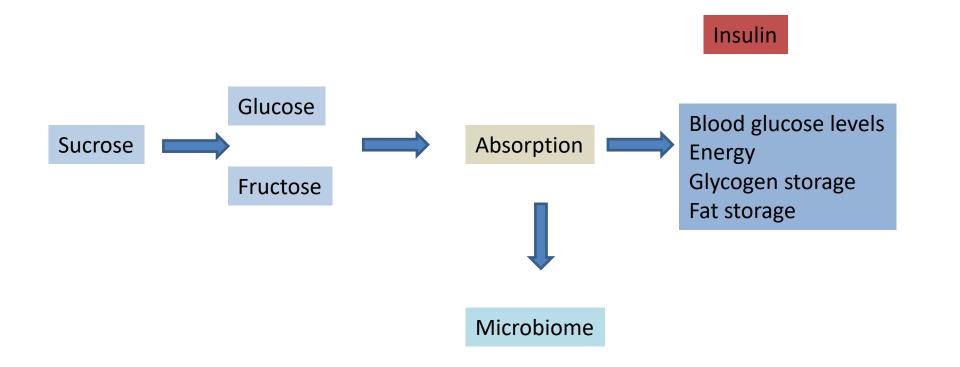

St-Pierre P, Pilon G, Dumais V, Dion C, Dubois MJ, Dubé P, Desjardins Y, Marette A. Comparative analysis of maple syrup to other natural sweeteners and evaluation of their metabolic responses in healthy rats. Journal of Functional Foods. 2014 Nov 1;11:460-71.

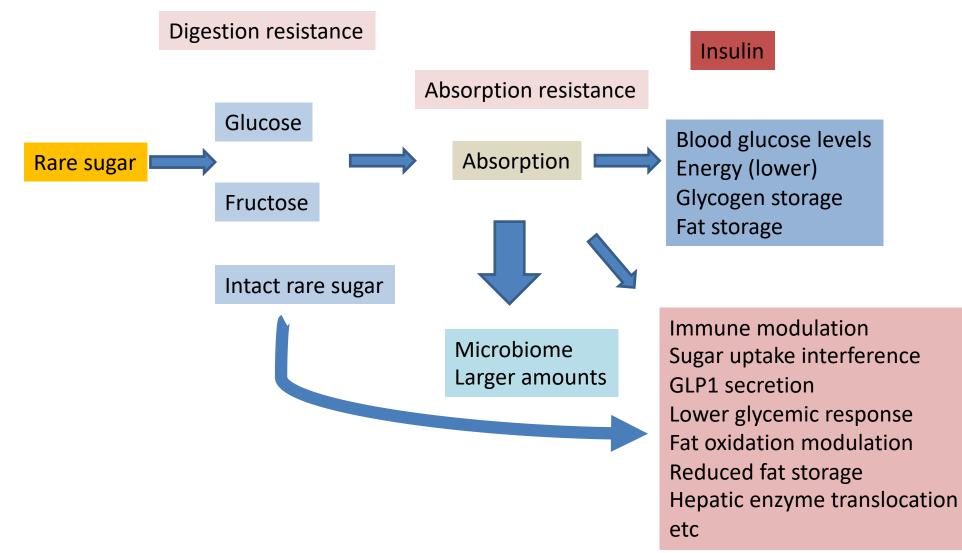
	Polysaccharides	Oligosaccharides	Sucrose	Glucose	Fructose	Total carbohydrates	Variation (%)
Maple	14±0.6 (2%)	2 ± 3.8 (0%)	860 ± 4.9 (97%)	8±1.8 (1%)	<bdl< td=""><td>884 (100%)</td><td>0.2</td></bdl<>	884 (100%)	0.2
Molasses	45 ± 0.1 (4%)	72 ± 1.2 (7%)	439 ± 1.8 (43%)	251 ± 2.2 (24%)	222 ± 2.6 (22%)	1029 (100%)	1.6
Brown rice	197 ± 14.3 (22%)	184 ± 0.5 (21%)	364 ± 1.9 (42%)	132 ± 0.1 (15%)	<bdl< td=""><td>877 (100%)</td><td>1.1</td></bdl<>	877 (100%)	1.1
Agave	<bdl< td=""><td><bdl< td=""><td>30 ± 0.3 (3%)</td><td>106 ± 0.2 (10%)</td><td>917 ± 3.7 (87%)</td><td>1053 (100%)</td><td>0.1</td></bdl<></td></bdl<>	<bdl< td=""><td>30 ± 0.3 (3%)</td><td>106 ± 0.2 (10%)</td><td>917 ± 3.7 (87%)</td><td>1053 (100%)</td><td>0.1</td></bdl<>	30 ± 0.3 (3%)	106 ± 0.2 (10%)	917 ± 3.7 (87%)	1053 (100%)	0.1
Corn	228 ± 3.5 (33%)	112 ± 0.4 (16%)	127 ± 0.4 (19%)	212 ± 0.4 (31%)	7 ± 0.5 (1%)	686 (100%)	1.4
Honey	3 ± 0.0 (0%)	7 ± 0.1 (1%)	35 ± 0.1 (3%)	528 ± 8.6 (47%)	553 ± 8.3 (49%)	1126 (100%)	0.8
Section (100 / 100 /							


St-Pierre P, Pilon G, Dumais V, Dion C, Dubois MJ, Dubé P, Desjardins Y, Marette A. Comparative analysis of maple syrup to other natural sweeteners and evaluation of their metabolic responses in healthy rats. Journal of Functional Foods. 2014 Nov 1;11:460-71.

Common Sugars



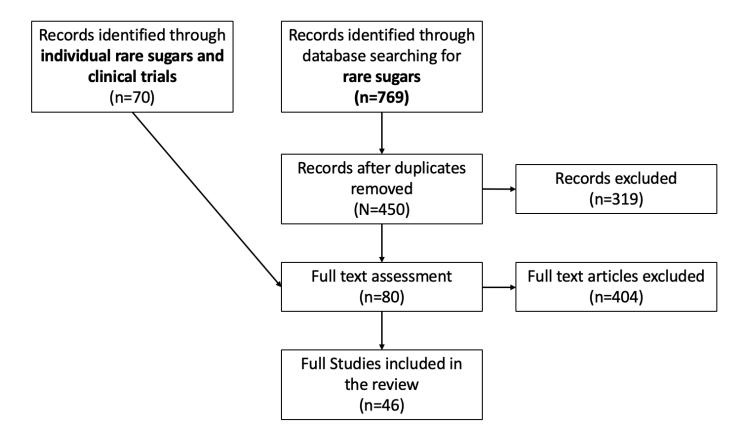

• Galactose (dairy)


• Lactose (dairy)

Common sugar effects

Rare sugar effects

Ahmed, A., Khan, T. A., Dan Ramdath, D., Kendall, C. W. C. & Sievenpiper, J. L. Rare sugars and their health effects in humans: a systematic review and narrative synthesis of the evidence from human trials. *Nutrition Reviews* (2021) doi:10.1093/nutrit/nuab012.


Special Article

Rare sugars and their health effects in humans: a systematic review and narrative synthesis of the evidence from human trials

Amna Ahmed (), Tauseef A. Khan, D. Dan Ramdath, Cyril W.C. Kendall, and John L. Sievenpiper

Rare sugars and their potential effects in human studies – Systematic Review and Meta-Analysis

Literature flowchart

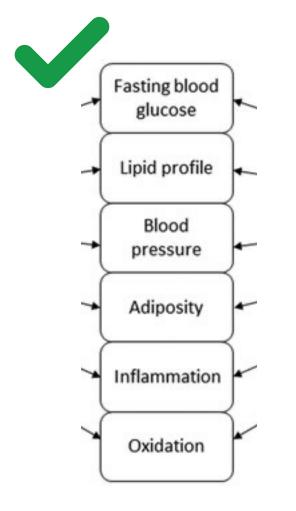
Rare Sugars

Rare Disaccharides

• 'Monosaccharides and their derivatives that are present in limited quantities in nature.' Hayashi et al. 2014

Rare Monosaccharides

- Allose
- Tagatose
- Allulose
- Sorbose

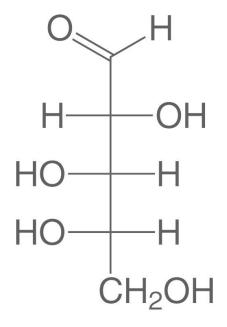

- Trehalose
- Turanose
- Leucrose
- Isomaltulose (palatinose)
- Kojibose
- Nigerose
- Etc.

- Erlose
- Panose
- Isopanose
- Maltotriose

Rare Trisaccharides

- Theanderose
- Melezitose
- Isomaltotriose
- Etc.

5 Rare Sugars of Focus

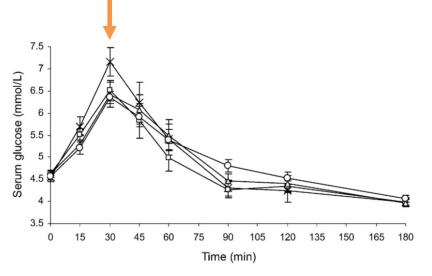

- Allulose
- L-Arabinose
- D-Tagatose
- Trehalose
- Isomaltulose (Palatinose)

Additional Sugars of Interest

- Allose
- Kojibiose
- Sorbose

L-Arabinose

- Food sources: grains, plant gums, maple syrup
- Sweetness (compared to sucrose): 50%
- Caloric content: 0 kcal/g (non-nutritive)
- Structure: monosaccharide, aldopentose

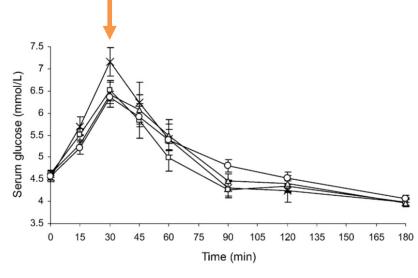


Sweetness of sucrose and none of the calories

L-Arabinose: acute effects - glycemic control

Patient type	Interventi on	Compar ator	Time	Setting
15 H	1, 2, or 3 g arabinose	Sucrose	Acute	Denmark

Population: Healthy individuals


Reduction in the glucose peak when given prior to a test meal compared to sucrose in health individuals

Krog-Mikkelsen et al. 2011

L-Arabinose: acute effects - glycemic control

Patient type	Interventi on	Compar ator	Time	Setting	Patient type	l
15 H	1, 2, or 3 g arabinose	Sucrose	Acute	Denmark	21 H	

Population: Healthy individuals

g	Patient type	Interventio n	Compa rator	Time	Setting
rk	21 H	2g arabinose	Sucros e	Acute	Japan

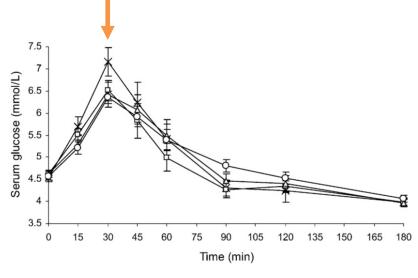
Population: Healthy individuals

Table 4 Highest Δ blood glucose values and area under the curves (AUC) after ingestion of the test or control meal, or sucrose-load meal by healthy adults (n = 21)

Meal	Highest Δ blood glucose (mg/dL)	AUC (mg min/dL)		
After ingestion of test or control meal				
Control meal	63.8 ± 17.9	$2,680 \pm 1,020$		
Test meal	$40.3 \pm 17.8^*$	$2,070 \pm 1,140*$		
After ingestion of	f sucrose-load meal			
Control meal	65.0 ± 17.7	$3,680 \pm 1,340$		
Test meal	$53.8 \pm 19.7*$	$2,680 \pm 1,310^{*}$		

Mean \pm SD (n = 21), * Significant different, p < 0.05

Reduction in the glucose peak when given prior to a test meal compared to sucrose in health individuals L-arabinose given prior to test meal or 40g of sucrose led to reduced blood glucose levels compared to water


Krog-Mikkelsen et al. 2011

Shibanuma et al. 2010

L-Arabinose: acute effects - glycemic control

Patient type	Interventi on	Compar ator	Time	Setting
15 H	1, 2, or 3 g arabinose	Sucrose	Acute	Denmark

Population: Healthy individuals

Patient type	Interventio n	Compa rator	Time	Setting
21 H	2g arabinose	Sucros e	Acute	Japan

Population: Healthy individuals

Table 4 Highest Δ blood glucose values and area under the curves (AUC) after ingestion of the test or control meal, or sucrose-load meal by healthy adults (n = 21)

Meal	Highest Δ blood glucose (mg/dL)	AUC (mg min/dL)		
After ingestion of test or control meal				
Control meal	63.8 ± 17.9	$\textbf{2,680} \pm \textbf{1,020}$		
Test meal	$40.3 \pm 17.8^*$	$2,070 \pm 1,140*$		
After ingestion of	f sucrose-load meal			
Control meal	65.0 ± 17.7	$3,\!680 \pm 1,\!340$		
Test meal	$53.8 \pm 19.7*$	$2,680 \pm 1,310*$		

Mean \pm SD (n = 21), * Significant different, p < 0.05

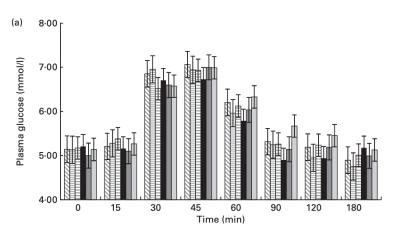
Reduction in the glucose peak when given prior to a test meal compared to sucrose in health individuals L-arabinose given prior to test meal or 40g of sucrose led to reduced blood glucose levels compared to water

17 H 5 or 10% Sucrose Acute Denma arabinose meal rk

Compar

ator

Time


Setting

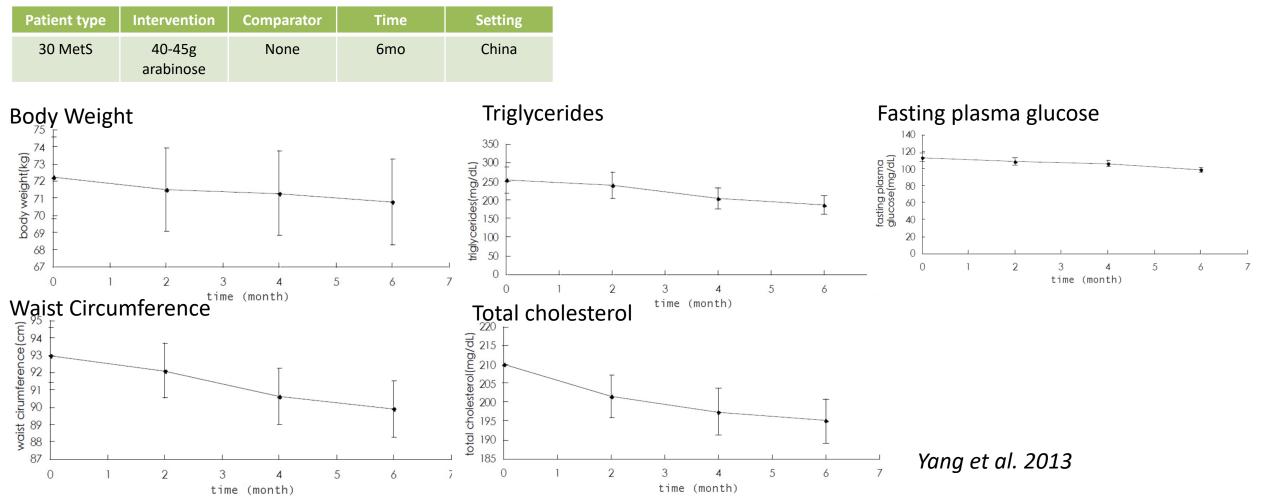
Population: Healthy individuals

Intervention

Patient

type

Did not see this effect when Larabinose supplemented breakfast meal


Krog-Mikkelsen et al. 2011

Shibanuma et al. 2010

Halschou-Jensen et al. 2015

L-Arabinose: longer term effects

Benefit to individuals with metabolic syndrome

6-month arabinose supplementation in individuals with metabolic syndrome showed decreased body weight, waist circumference, triglycerides, total cholesterol, and fasting plasma glucose

Summary

Rare sugar	Healthy individuals	Obese/overweight individuals	Individuals with type 2 diabetes	Side effects
L-Arabinose	Acute - reduced insulin and glucose peak post- test meal	 Longer term reduced waist circumference reduced total cholesterol reduced fasting plasma glucose 		Nausea, abdominal pain, diarrhea

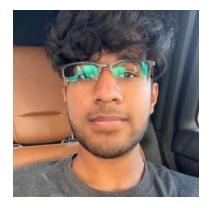
L-Arabinose: possible mechanism

• Potential mechanism: inhibits brush border enzyme **sucrase** which can reduce glucose absorption and contribute to the effect seen.

1. Mariette A, Kang HS, Heazlewood JL, Persson S, Ebert B, Lampugnani ER. Not just a simple sugar: arabinose metabolism and function in plants. Plant and Cell Physiology. 2021 Dec 1;62(12):1791-812.

Monosaccharides	
Fructose	\oplus
Glucose	\oplus

Disaccharides (15)	
Sucrose isomers	
Trehahulose (D-glucose 1-1 D-fructose)	
Sucrose (D-glucose 1-2 D-Fructose)	\oplus
Turanose (D-glucose 1-3 D-fructose)	
Maltulose (D-glucose 1-4 D-fructose)	
Leucrose (D-glucose 1-5 D-fructose)	
Isomaltulose (palatinose) (D-glucose 1-6 D- fructose)	\oplus
α-glucobioses (α-glucose disaccharides)	
Trehalose (D-glucose 1-1 D-glucose)	\oplus
Kojibiose (D-glucose 1-2 D-glucose)	
Nigerose (D-glucose 1-3 D-glucose)	
Maltose (D-glucose 1-4 D-glucose)	\oplus
Isomaltose (D-glucose 1-6 D-glucose)	
β-glucobioses (β-glucose disaccharides)	
Laminaribiose (β-D-glucose 1-3 D-glucose)	
Cellobiose (β-D-glucose 1-4 D-glucose)	
Gentiobiose (β-D-glucose 1-6 D-glucose)	
Melibiose (D-galactose 1-6 D-glucose)!	


Trisaccharides (12)

Sucrose-containing trisaccharides

Melezitose (D-glucose 1-3 β-D-fructose 2-1 D-glucose) Raffinose (β -D-fructose - α -D-glucose 1-6 D-galactose)! 1-Kestose (D-glucose 1-2 β -D-fuctose 1-2 β -D-fructose) 6-Kestose (D-glucose 1-2 β -D-fuctose 2-6 β -D-fructose) Erlose (D-glucose 1-4 D-glucose 1-2 β-D-fructose) Neokestose (β -D-fructose 1-2 D-glucose 1-6 β -D-fructose) Theanderose (D-glucose 1-6 D-glucose 1-2 β-D-fructose) Glucose trisaccharides Centose (D-glucose 1-4 D-glucose 1-2 D-glucose) Panose (D-glucose 1-6 D-glucose 1-4 D-glucose) Isopanose (D-glucose 1-4 D-glucose 1-6 D-glucose) Maltotriose (D-glucose 1-4 D-glucose 1-4 D-glucose) Isomaltotriose (D-glucose 1-6 D-glucose 1-6 D-glucose)

Tetrasaccharides/oligosaccharides (3)	
Maltotetraose	
Isomaltotetraose	
Isomaltopentaose	

Evidence Map of Rare Sugars in Maple Syrup: Identification, Abundance and benefits to cardiometabolic health

Frass Chaudhary, BHSc student McMaster University University of Toronto (summer student) • On going study

Sugars/rare sugars in Maple Syrup

Monosaccharides

Glucose
Fructose
Galactose
Rhamnose
Arabinose
Xylose

Disaccharides

SucroseMaplebiose 1Several unknowns

Trisaccharides

- •Raffinose
- 1-Kestose
- •1-Nystose
- Neokestose
- •Mapletriose 1
- Mapletriose 2Mapletriose 3

Tetrasaccharide •Nystose

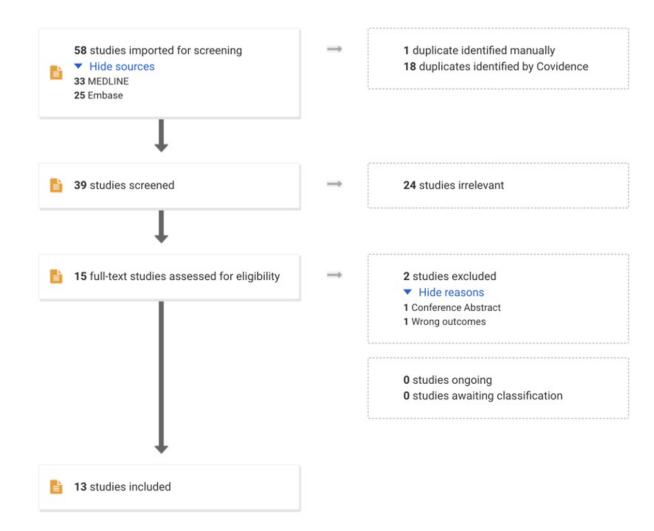
Polysaccharides Inulin

17 sugars in maple syrup with 14 can be considered rare sugars

ReferencesAdams 1959Alli 1992

All 1992
Sato 2019
Sun 2016
Mohammed 2023
Brochu 2019
Mellado 2016
Taga 2012

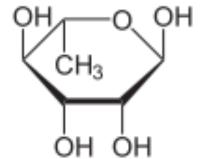
Search - Medline


Keywords

Terms connected by OR	AND	Terms connected by OR	AND	Terms connected by OR
Sugars [MeSH]		Maple Syrups		EMPTY
OR Rare Sugars		OR "Maple Syrup"		
OR Sucrose		NOT Maple Syrup Urine Disease		
OR Fructose				
OR Glucose				
OR *Saccharide				
OR *Rhamnose				
OR *Arabinose				
OR *Xylose				
OR *Blastose				
OR *Raffinose				
OR Maplebiose*				
OR *Kestose				
OR Fructo-oligosaccharides				
OR Mapletriose*				
OR Neokestose				
OR *Nystose				
OR *Inulin				

MeSH terms are <u>underline</u> No LIMITS were <u>used</u>

21 February 2024


Flowchart

Rare sugars in Maple Syrup – Some preliminary results

L-Rhamnose

Structure: Methyl-pentose Deoxy Sugar

Maple Syrup Composition: Concentration compared to other saccharides is unknown. In sap not present in its it's monosaccharide form, but rather found in various polysaccharides such as arabinogalactins.

Digestion: Resists digestion and absorption before reaching colon.

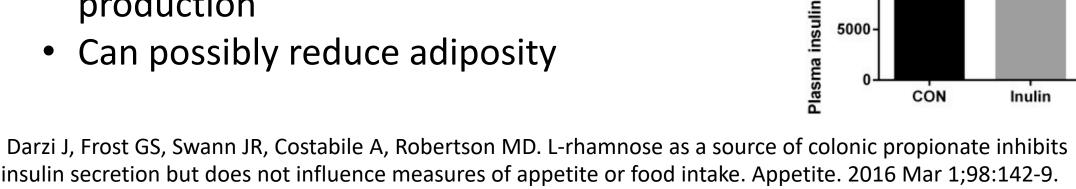
Metabolic Effects

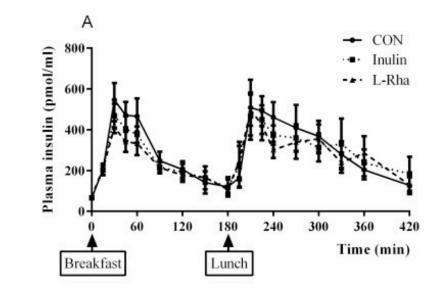
- **Skin Anti-aging:** Rhamnose benefits two key areas of skin aging: the papillary dermis and the dermal-epidermal junction.
- **Prebiotic**: L-Rhamnose is a prebiotic and can help support healthy gut bacteria
- **Lipogenic affects**: Varying data suggests L-Rhamnose affects lipid profile, but no consistency on the direction of effect.
- Anti-cancer potential: Suppressed tumour growth in mice
- Appetite: Reduced plasma insulin without affecting appetite.

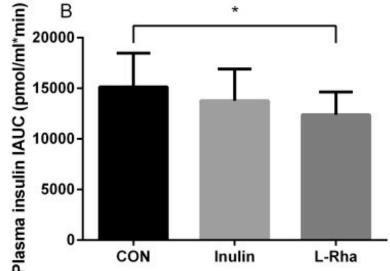
^{1.} Adams GA, Bishop CT. Constitution of an arabinogalactan from maple sap. Canadian Journal of Chemistry. 1960 Dec 1;38(12):2380-6.

^{2.} Pageon H, Azouaoui A, Zucchi H, Ricois S, Tran C, Asselineau D. Potentially beneficial effects of rhamnose on skin ageing: an in vitro and in vivo study. International Journal of Cosmetic Science. 2019 Jun;41(3):213-20.

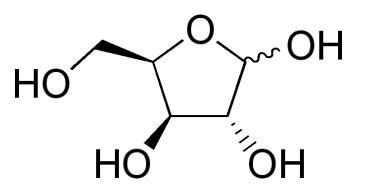
^{3.} Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A, Ghasemi Y. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods. 2019 Mar 9;8(3):92.


^{4.} Darzi J, Frost GS, Swann JR, Costabile A, Robertson MD. L-rhamnose as a source of colonic propionate inhibits insulin secretion but does not influence measures of appetite or food intake. Appetite. 2016 Mar 1;98:142-9.


L-Rhamnose

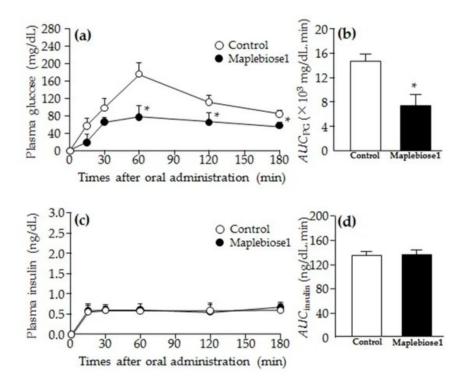

- 13 healthy men and women
- L-Rhamnose vs control
- Reduced plasma insulin without affecting appetite in mixed breakfast and lunch

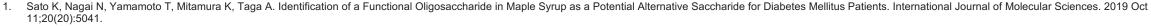
Mechanism

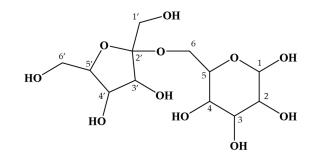

- Possibly via short-chain fatty acid (propionate) activated PYY and GLP-1 production
- Can possibly reduce adiposity

Xylose

Structure: Pentose Sugar – 5 carbon sugar

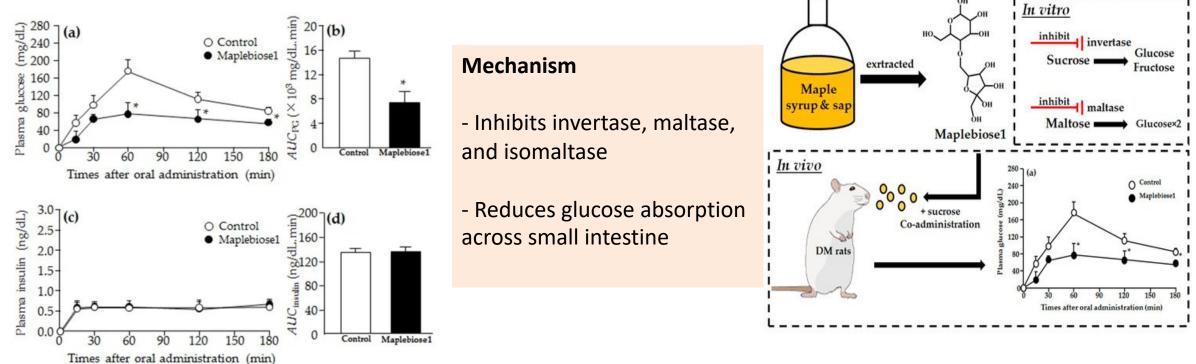

Found in: Typically found in wood and straw. Studied extensively in pigs and other livestock.
Maple Syrup Composition: [TBD]
Metabolic Effects:

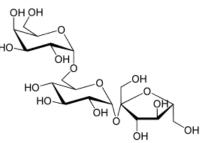

- Lower calories than sucrose
- Prebiotic, promoting growth of beneficial gut bacteria such as Bifidobacteria and Lactobacilli
- Low glycemic index improved Postprandial glycemic response by inhibiting sucrase enzyme
- Anti-oxidative and anti-inflammatory properties
- Improved lipid profile by reducing total cholesterol and LDL-Cholesterol


^{1.} Mellado-Mojica E, Seeram NP, López MG. Comparative analysis of maple syrups and natural sweeteners: Carbohydrates composition and classification (differentiation) by HPAEC-PAD and FTIR spectroscopy-chemometrics. Journal of Food Composition and Analysis. 2016 Sep 1;52:1-8.

Maplebiose 1/Blastose

- Structure: A disaccharide of 6-glucose 2-fructose [blastose]
- Found in: Maple syrup
- Maple Syrup composition: [TBD]
- Metabolic effect
 - In OLETF (fatty) rats, Maplebiose 1 lowered the AUCPG over 3 hours after sucrose intake compared to controls, with no significant difference in insulin levels.




Maplebiose 1/Blastose

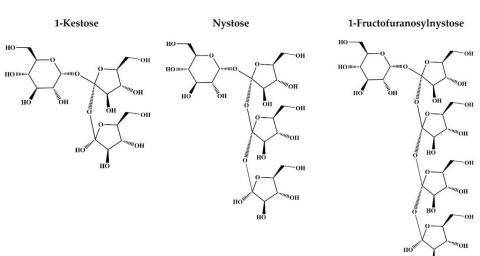
- Structure: A disaccharide of 6-glucose 2-fructose [blastose]
- Found in: Maple syrup
- Maple Syrup composition: [TBD]
- Metabolic effect
 - In OLETF (fatty) rats, Maplebiose 1 lowered the post-prandial glucose over 3 hours after sucrose intake compared to controls, with no significant difference in insulin levels.

Sato K, Nagai N, Yamamoto T, Mitamura K, Taga A. Identification of a Functional Oligosaccharide in Maple Syrup as a Potential Alternative Saccharide for Diabetes Mellitus Patients. International Journal of Molecular Sciences. 2019 Oct 11;20(20):5041.

Raffinose

- Structure: A trisaccharide of galactose, glucose and fructose.
- Found in: beans, cabbage, broccoli, asparagus, maple syrup
- Maple Syrup composition: 5.05 25.3 μg/mg depending on grade of Maple Syrup (highest in dark)

• Metabolic effect


- Prebiotic promotes growth of beneficial bacteria in gut
- Low glycemic index helps manage blood pressure
- Satiety dietary fibre

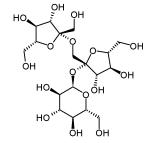
1. Elango D, Rajendran K, Van der Laan L, Sebastiar S, Raigne J, Thaiparambil NA, El Haddad N, Raja B, Wang W, Ferela A, Chiteri KO. Raffinose family oligosaccharides: friend or foe for human and plant health?. Frontiers in Plant Science. 2022 Feb 17;13:829118.

2. Dou Y, Yu X, Luo Y, Chen B, Ma D, Zhu J. Effect of fructooligosaccharides supplementation on the gut microbiota in human: a systematic review and meta-analysis. Nutrients. 2022 Aug 12;14(16):3298.

FOS - fructosyl oligosaccharides

- Saccharides (sugars) such as fructosyl oligosaccharides (FOS) now popular
- Function as indigestibility and prebiotics, which are beneficial to human health
- In maple syrup
 - 1-kestose,
 - Nystose,
 - 1-fructofuranosylnystose

⁻ Sato K, Yamamoto T, Mitamura K, Taga A. Separation of fructosyl oligosaccharides in maple syrup by using charged aerosol detection. Foods. 2021 Dec 20;10(12):3160.


The concentration of saccharides in all grades of maple syrup under investigation

Variables	Golden	Amber	Dark	Very Dark
Fructose (µg/10 mg)	21.3 ± 0.146	41.7 ± 0.295	65.6 ± 0.442	163 ± 1.46
Glucose (µg/10 mg)	31.6 ± 0.152	55.1 ± 0.396	83.3 ± 0.464	198 ± 2.12
Sucrose (mg/10 mg)	5.98 ± 0.159	5.94 ± 0.138	6.04 ± 0.115	5.49 ± 0.0506
Mapletriose1 ^(*) (µg/10 mg)	20.6 ± 1.23	19.6 ± 0.474	31.2 ± 0.491	40.6 ± 0.573
1-Kestose (µg/10 mg)	5.05 ± 0.357	10.1 ± 0.383	13.6 ± 0.142	25.3 ± 0.510
Nystose (µg/10 mg)	0.244 ± 0.0155	0.593 ± 0.00395	1.45 ± 0.0191	3.08 ± 0.0483

Data are presented as mean ± S.D. (*) The concentration of mapletriose1 was predicted using the calibration curve of 1-kestose.

1. Sato K, Yamamoto T, Mitamura K, Taga A. Separation of fructosyl oligosaccharides in maple syrup by using charged aerosol detection. Foods. 2021 Dec 20;10(12):3160.

1-Kestose

- Structure: A trisaccharide of glucose and two fructose molecules.
- Found in: garlic, onions, asparagus, and banana, maple syrup, honey
- Maple Syrup composition: 5.05 25.3 μg/mg depending on grade of Maple Syrup (highest in Very Dark)
- Metabolic effect
 - Prebiotic for gut health
 - Lower glycemic index
 - Does not promote tooth decay

^{1.} Watanabe A, Tochio T, Kadota Y, Takahashi M, Kitaura Y, Ishikawa H, Yasutake T, Nakano M, Shinohara H, Kudo T, Nishimoto Y. Supplementation of 1-kestose modulates the gut microbiota composition to ameliorate glucose metabolism in obesity-prone hosts. Nutrients. 2021 Aug 27;13(9):2983.

Mapletriose 1/Neokestose

- Structure: A trisaccharide of glucose and two fructose molecules.
- Found in: maple syrup,
- Maple Syrup composition: Mapletriose 1 is the 4th most abundant saccharide observed in maple syrup chromatograms, after sucrose, glucose and fructose. It is found at a concentration of 20.6 - 40.6 μg/mg
- Metabolic effect
 - Similar benefits to maplebiose 1
 - Prebiotic
 - Affect on human melanoma cells
- 1. Sato K, Yamamoto T, Mitamura K, Taga A. Separation of fructosyl oligosaccharides in maple syrup by using charged aerosol detection. Foods. 2021 Dec 20;10(12):3160.
- 2. Wu JS, Chang JY, Chen CW, Lin MT, Sheu DC, Lee SM. Neokestose suppresses the growth of human melanoma A2058 cells via inhibition of the nuclear factor-κB signaling pathway. Molecular Medicine Reports. 2017 Jul 1;16(1):295-300.

Conclusion

- 1. Maple syrup is not a simple sugar
- 2. Maple syrup exerts metabolic benefits when replacing refined sugar
- 3. Maple syrup has lower than expected glycemic index and can be beneficial for those who with glucose intolerance
- 4. These benefits can possibly be explained by the rare sugar content of maple syrup
- 5. More human studies are needed on maple syrup to replicate its cardiometabolic effects.
- 6. The effects of novel rare sugars in maple syrup needs further evaluation

Thank you tauseef.khan@utoronto.ca

Acknowledgments

Lab members

Dr John Sievenpiper Dr. Sonia Blanco Mejia, MD, MSC (Research Associate) Dr. Laura Chiavaroli, PhD (Assistant Professor) Dr. Andreea Zurbau, MBBS, PhD (Research Associate) Dr. Stephanie Nishi, MSc, RD, PhD (PDF, Spain) Dr. Andrea Glenn, PhD, RD (PhD, US) Mr. Rodney Au Yeung, MSc (PhD student) Ms. Sabrina Ayoub-Charette, HBSc (PhD student) Ms. Meaghan Kavanagh, MSc (PhD student) Ms. Madeline Erlich, RD (PhD student) Ms. Diana Ghidanac, RD (MSc student) Ms. Victoria Chen (MSc student) Ms. Julianah Oguntala (Summer student) Ms. Gabriella Viscardi (MSc student) Ms. Songhee Back (Msc student)

OMSPA 2024

St. Michael's Inspired Care. Inspiring Science.

TORONTO 3D